E2.5 Signals \& Linear Systems

Tutorial Sheet 8 - DFT and z-transform

(Lectures 14-15)
1.* For a signal $f(t)$ that is time-limited to 10 ms and has an essential bandwidth of 10 kHz , determine N_{0}, the number of signal samples necessary to compute a power of 2 DFT with a frequency resolution f_{0} of at least 50 Hz . Explain if any zero padding is necessary.
2.* Choose appropriate values for N_{0} and T and compute the DFT of the signal $e^{-t} u(t)$. (Note that the choice of N_{0} and T is not unique; it will depend on your assumptions. What is important here is the reasoning that you use to arrive at your answer.)
3.** For the functions $f(t)$ and $g(t)$ shown in Fig. Q3, write the appropriate sequences f_{k} and g_{k} necessary for the computation of the fast convolution of $f(t)$ and $g(t)$. Use $\mathrm{T}=1 / 8$. (Note that fast convolution is achieved by converting $f(t)$ and $g(t)$ to frequency domain via fast Fourier Transform.)

(a)

Figure Q3
4. Using the definition of z-transform, show that
(a)* $\quad \gamma^{k-1} u[k-1] \Leftrightarrow \frac{1}{z-\gamma}$
(b)** $u[k-m] \Leftrightarrow \frac{Z}{Z^{m}(z-1)}$
(c)** $\frac{\gamma^{k}}{k!} u[k] \Leftrightarrow e^{\frac{\gamma}{z}}$
5. Using z-transform table given in the lecture notes, show that
(a)* $\quad 2^{k+1} u[k-1]+e^{k-1} u[k] \Leftrightarrow \frac{4}{z-2}+\frac{z}{e(z-e)}$
(b)** $k \gamma^{k} u[k-1] \Leftrightarrow \frac{\gamma Z}{(z-\gamma)^{2}} \quad($ Hint: $u[k-1]=u[k]-\delta[k], f[k] \delta[k]=f[0] \delta[k]$.
(c)** $\left[2^{-k} \cos \frac{\pi}{3} k\right] u[k=1] \Leftrightarrow \frac{0.25(z-1)}{z^{2}-0.5 z+0.25}$
6. Find the inverse z-transform of
(a)* $\quad X[z]=\frac{z(z-4)}{z^{2}-5 z+6}$
(b) ${ }^{* *} X[z]=\frac{z\left(e^{-2}-2\right)}{\left(e^{-2}-2\right)(z-2)}$
(c)** $X[z]=\frac{z(-5 z+22)}{(z+1)(z-2)^{2}}$
$(d){ }^{* * *} X[z]=\frac{2 z^{2}-0.3 z+0.25}{z^{2}+0.6 z+0.25}$
7.* Find the first three terms of $f[k]$ using long division method given that

$$
F[z]=\frac{2 z^{3}+13 z^{2}+z}{z^{3}+7 z^{2}+2 z+1}
$$

8.** For a discrete-time signal shown in Fig. Q8, show that

$$
F[z]=\frac{1-z^{-m}}{1-z^{-1}}
$$

Figure Q8

